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The kinetics of decomposition of solid solutions
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The influence of solute—solute interactions on segregation processes in multi-component

solid solutions leading to the formation of a new phase with a given stoichiometric

composition, has been investigated for the first time. Expressions for the nucleation and

growth rates have been derived. Estimates were developed for the time required to establish

a steady-state nucleation rate in the system and the time interval for which such

a steady-state can be sustained. Based on these results, it is anticipated that a method for an

experimental determination of the parameters describing the interaction of the solute

components, could be developed. The kinetic equation describing the evolution of the

cluster size distribution function has been generalized to account for stochastic effects due to

both fluctuations in the growth rate and possible spatial correlations of the evolving clusters

in the matrix. The possible influence of such stochastic effects (thermal noise and random

coalescence) on coarsening described by such additional terms has been discussed briefly.
1. Introduction
Phase transformation processes in solid solutions are
known to determine a large variety of properties of
materials [1—3]. In particular, this statement refers to
segregation processes in solid solutions. A detailed
investigation of such processes is, therefore, of out-
standing technological and (owing to the number of
difficult problems involved in such investigations)
scientific importance.

The description of the initial stages of segregation
processes in solids is carried out commonly based on
classical nucleation theory (see [4—8]). This theory is
supplemented by theoretical descriptions of the late
stages of the transformation developed first by Lifshitz
and Slezov [9] and extended later by different authors
to account for the influence of a finite volume fraction
of the evolving phase (diffusional interaction of the
clusters, see, for example, [10]), elastic fields evolving
during the course of growth (cluster—matrix inter-
actions [7, 11], interactions between the different clus-
ters [12]), spatial correlations of the clusters and other
possible effects on coarsening (for example, [13]), and
analyses giving a description of the whole course of
the transformation (see, for example, [7]).

As is well-known, the classical nucleation theory
was developed in the 1920—1930s by several workers
(e.g. Volmer, Becker, Düring, Stranski, Kaischew,
Zeldovich, Frenkel) first for one-component systems
and then generalized by Reiss to binary nucleation
([4—7]). Subsequently, a number of attempts have
been made to extend the results to nucleation pro-
cesses in multi-component solid or liquid solutions,
however, a final solution of all the various problems

involved in such a task has been missing until now.
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In a recent publication, the formation process of
a new phase in a multicomponent solid solution
was analysed for the case where clusters of a definite
stoichiometric composition are formed [8]. It was
shown that, for this particular situation, a consistent
theory of nucleation and growth can be formulated.
Moreover, in addition, a novel method for the deter-
mination of the relations connecting the rates of ag-
gregation and dissolution of clusters of different sizes,
was developed, by avoiding the application of the
concept of detailed balancing for supercritical clusters,
i.e. in the range of cluster sizes where its application is
particularly questionable. This method is applicable
far beyond the special problem considered.

Based on the general relations derived, special cases
were considered for an illustration. Hereby it was
assumed that the different solute components do not
interact with each other, i.e. only the solute—matrix
interaction was taken into account. This assumption is
in line with classical investigations of segregation pro-
cesses in solutions where, generally, the case of a weak
(perfect) solution is considered.

In the present paper, as a generalization of the
earlier results obtained for the first time, such interac-
tions are taken into account in a comprehensive man-
ner (for first attempts in this direction see [14]). It
is shown that the general form of the basic equations
remains the same, but in these equations the concen-
trations of the different components have to be
replaced by chemical activities which are deter-
mined both by the concentrations and the type of
interactions between the different components.
A method is developed allowing an experimental de-

termination of the interaction parameters of the solute
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components and, thus, of the chemical activities of the
solute components.

The outlined theory may also be used to study
nucleation processes in other fields of application
where interactions between the basic building units of
the evolving phase in clustering are essential for an
understanding of the kinetics of nucleation and growth.

As a next step, a generalization of the kinetic equa-
tion is given, which is used commonly for the descrip-
tion of the evolution of the cluster size distribution.
It contains, in addition to the regular hydrodynamic
term describing the deterministic motion in cluster
size space, a term proportional to the first derivative of
the cluster size distribution function. This additional
term reflects diffusion-like processes in cluster size
space due to the influence of stochastic effects on the
growth kinetics.

Moreover, another type of stochasticity is ac-
counted for, connected with a possible touching and
merging of clusters in the nucleation—growth process.
Such effects are described by a collision integral. The
influence of both effects on the different stages of the
segregation process is investigated.

2. Basic kinetic equations
The time evolution of an ensemble of clusters in
nucleation—growth processes is usually described in
terms of the cluster size distribution function, f (n, t).
As shown in detail elsewhere [8], the evolution of the
distribution f (n, t) of aggregates consisting at time t of
n structural elements in the process of formation of
a phase with a given stoichiometric composition, may
be calculated by a Fokker—Planck type equation of
the form

­ f (n, t)

­n
"

­
­n Gwn,n`1 C

­ f (n, t)

­n
#

f (n, t)

k
B
¹

­*'(n)

­n DH
#J

#
(n, t) n<1 (1)

where k
B

is the Boltzmann constant, ¹ the absolute
temperature, and ' the Gibbs free energy. The kinetic
coefficient w

n,n`1
describes here the probability that,

per unit time, a primary building unit is incorporated
to an aggregate consisting initially of n such units.
Its specific form is determined by the mechanism of
growth underlying the temporal evolution of the clus-
ter size distribution and thermodynamic properties of
the considered system.

In addition to earlier considerations, in Equation
1 a ‘‘collision integral’’ term J

#
is introduced ac-

counting for processes of touching and merging of the
aggregates in the course of the segregation process. In
the initial stages of the transformation process, the
probability of such collisions is small, at least, if the
volume fraction of the solute is sufficiently low. There-
fore, as was done earlier and also in the present paper,
for the consideration of nucleation, this term may be
neglected. However, it may have a major impact on
the late stages of the transformation accounting, at
least in part, for a deviation of the cluster size distribu-
tions observed experimentally from the original

Lifshitz—Slezov theoretical predictions (cf. [13, 15, 16]).

3740
On the contrary, the second additional term in the
kinetic equation is of basic importance in this stage,
being the only source for processes of the formation of
supercritical clusters. As will be shown later, its influ-
ence on the late stages of the process, however, ceases
with time, although at intermediate times it may also
have an important influence on the shape of the size
distribution [17].

To generalize results earlier obtained to segregation
processes in solutions, both the kinetic coefficients and
the boundary conditions have to be reformulated. The
respective relations depend on the thermodynamic
properties and the type of interaction between the
solute particles. Its thermodynamic description will be
discussed in the next section.

3. Solute–solute interactions:
thermodynamic relationships

The Helmholtz free energy, F, and the chemical
potentials, l

*
, of the different components in a solid

solution, taking into account possible interactions
between them, can be calculated easily, if, as it is
assumed commonly, only configurational contribu-
tions for the determination of the entropy are taken
into consideration. Generally we have

F"!k
B
¹ lnZ (2)

Z"+
n

expA!
E

n
k
B
¹B (3)

k
B

is the Boltzmann constant, ¹ the absolute temper-
ature, Z the partition function of the system and E

n
are the different values of the energy of the system in
a canonical ensemble.

With the above-mentioned assumption, we may
write, approximately
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where S is the entropy, » is volume, E
0
(S, » ) is the

thermodynamic (most probable value) energy of the
matrix not containing solute components, while
*E(N, (n

i
)) is the correction term accounting for the

change in the energy if solute components are intro-
duced into the solid solution.

The statistical weight, *!, is determined by the
product of the respective quantities for the pure
matrix (*!(¹, » )) and the configurational part of the
solute components (*![N,(n

i
)]). N is the total number

of lattice sites where solute components may be intro-
duced into the matrix, (n

i
) describes the set of solute

components in the matrix.
The thermal contributions to the entropy depend

only weakly on the concerntration and distribution
of solute particles in the matrix; therefore, they
can be neglected in the calculation of the chemical

potentials.



The energy term *E[N,(n
i
)] may be written in a first

approximation [18] as
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where b
ik

is constant which accounts for interaction of
the solute components; E(0)[N,(n

i
)] (the energy contri-

bution of the solute components) is denoted, taking
into account only solute—matrix interactions. The in-
teractions between the solute components themselves
are described in a first approximation by the second
term in Equation 5.

The configurational statistical weight has the same
value independent of whether the interaction of the
solute particles with each other is or is not accounted
for; it depends only on the number of distributions of
(n

i
) solute particles on N lattice sites in the matrix.
Equation 2—5 yield
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where c
k
is the concentration of component k, F (0) and

l (0)
i

are the Helmholtz free energy and the chemical
potential of the ith component for the case where
the segregating components do not interact with each
other.

As the result we obtain
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w
i
is the excess enthalpy of the ith solute component in

the matrix.
Equation 10 indicates that it is reasonable to intro-

duce the notation

u
i
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resulting with Equation 10 in
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It is easily verified (cf. Equations 8 and 12) that the
expression for the chemical potential has the same
form as for a weak (perfect) solution with the differ-
ence that the concentrations, c

i
, are to be replaced by

the chemical activities u
i
. Moreover, in the outlined

approach, the chemical activities are well-defined
quantities expressed through the interaction para-
meters b

ik
. A method of experimental determination

of these parameters and thus of the activities will be
discussed somewhat later.

As the next step we consider the change *' of the

Gibbs free energy, ', connected with the formation of
an aggregate of a definite stoichiometric composition
consisting of n structural elements. We have [8]
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where m
i

are stoichiometric coefficients; l(=)
4

is the
chemical potential of a structural element of the
aggregate, l

i
the chemical potentials of the different

solute components in the solid solution, r is the speci-
fic interfacial energy, and x

4
is the volume of one

structural element of the evolving phase.
Assuming that both the aggregate and the struc-

tural element are of spherical shape, the radius, R, of
the aggregate and radius a

4
, of the structural element

may also be introduced as parameters. They are con-
nected by the equations
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Equation 14a may be considered also as the definition
of the parameter a

4
.

A derivation of Equation 13 with respect to n yields
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By setting the derivative equal to zero, Equation 15
may be used to determine either the equilibrium
concentrations of the different solute components (for
a given value of n) or the critical size, n

#
, of the

aggregate (for given values of the solute concentration
in the matrix). The resulting equation reads
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With Equation 12 we obtain
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If we introduce, in addition, the constant K
=

(p, ¹ ) of
the chemical reaction equilibrium for a bulk system
(n~1@3

#
PR) as
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and a similar relation for the respective equilibrium
constant for the reaction taking place near an aggre-
gate consisting of n structural elements
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then Equation 17 may be rewritten as
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It follows that, as a special case, the equilibrium
values of u

i
in the bulk (denoted as u(=)

i
) obey the

following relation

<
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(u(=)
i

)mi"K
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(p, ¹ ) (21)

For given values of the quantities u
i
, Equations 16

or 17 allow estimation of the critical number of struc-
tural elements in an aggregate as
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where the supersaturation, *, is determined by
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By using the same notations we may also write
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of applying Equations 19 and 20
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These expressions are needed in the subsequent deri-
vations.

4. Rate of change of the number
of structural elements of an
aggregate of the newly evolving
phase: the diffusion coefficient
in the space of structural elements

The flux of particles of the ith component to an aggre-
gate of the new phase consisting of n structural
elements may be written, similarly to the case of segre-
gation of one solute component in the matrix (c.f. [8]),
in the form

4pR2j
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ni, ni`1

1

k
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­*'(4)

­n
i
D (26)

In this equation w
ni,ni`1

denotes the probability per
unit time that particles of the ith component are in-
corporated into an aggregate consisting of n structural
elements (and characterized sometimes also by
a radius R (n)). This quantity may be expressed in the
following way [19]

w
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4pR2a
.
cJ
i

x
.
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where cJ
i
is the concentration (molar fraction) of the ith

component in the surface layer. The parameter a
i
de-

scribes the degree of inhibition of the diffusion process

in the immediate vicinity of the aggregate. It has
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values in the range 0)a
i
)1. D

i
denotes the partial

diffusion coefficient of the ith component in the im-
mediate vicinity of the aggregate, and a

.
is the lattice

constant of the matrix. With these notations it be-
comes evident that the first part of the right-hand
side of Equation 27 (a

i
D

i
/a2

.
) means the frequency of

jumps of particles of the ith component in the inter-
facial layer near the aggregate in the direction of the
aggregate.

Thus, the total number of particles in the surface
layer can be written as (4pR2a

.
/x

.
), where x

.
is the

average volume per particle in the matrix. By multi-
plying this ratio with the concentration (molar frac-
tion), cJ

i
, of the ith component in the surface layer, we

obtain the total number of particles of the ith compon-
ent in the layer. Consequently, w

ni,ni`1
has, indeed, the

meaning as specified above.
In addition to the number of jumps, the diffusional

fluxes to the surface of the aggregate are determined
by the change of the thermodynamic potential *'(4).
Let n

i
be the number of particles of the ith component

in an aggregate of size n. *'(4) is the change of the
thermodynamic potential, required to transfer all par-
ticles, n

i
, of the different components required for the

formation of an aggregate of size n from the solution
with values of the concentration cJ

i
to a solid state for

which an aggregate of size n is in equilibrium with the
surrounding solution. The value of the chemical po-
tential of the ith component, being in thermodynamic
equilibrium with an aggregate of size n, is denoted
by l

i
(c

ni
), and c

ni
specifies the respective values of

the equilibrium concentrations of the components in
the matrix. As will be shown later, a determination
of these concentrations, although possible, is not
required for a formulation of the kinetic equations
describing nucleation and growth.

To distinguish such a type of change of the charac-
teristic thermodynamic potential from the change due
to the formation of an aggregate of size n, the super-
script (s) in *'(4) is introduced. According to the given
definition, *'(4) may be written as
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A derivation of Equation 28 with respect to n
i
yields

A
­*'(4)

­n
i
B"![l

i
(cJ

i
)!l

i
(c

ni
)] (29)

and after a substitution into Equation 26 we obtain
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In the derivation of Equation 30, in addition, the
relations
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where applied. x is the volume per primary building

4

unit in the segregating phase.



The rate of change of the number n of structural
elements may then be written as

dn

dt
"

4pR2+
i
x
i
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x
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(32)

where the parameters x
i
denote the volume of a par-

ticle of the ith component in an aggregate of the newly
evolving phase.

In application of Equation 29 to the description of
the process of formation and growth of aggregates of
stoichiometric composition, it has to be taken into
account that the different fluxes are connected by the
additional condition
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where m
i
denotes the molar fractions of the different

components in the newly evolving phase. This relation
allows expression of the rate of growth of the aggre-
gate through the density of fluxes of only one of the
components, e.g. the ith component as
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from which the identity +
i
m
i
x

i
"x

4
was taken into

account.
A substitution of Equation 30 into Equation 34

yields
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By dividing Equation 35 through the difference of the
chemical potentials as well as by m

i
, and taking as the

next step the sum over all components, the equation
may be rewritten in the form
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Introducing the notation
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and taking into account the following identities (cf.
Equations 12 and 20)
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we obtain, finally
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For the rate of change of the number of structural

elements we may write alternatively, an expression
similar to Equation 26 as
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where v denotes velocity, nuclei growth rate; *' is
determined by Equation 13. With Equation 24 we
may rewrite this relation in the form
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A comparison between Equations 41 and 39 shows
that the rate coefficient w

n,n`1
may be written as

w
n,n`1

"

3D*n2@3

a2
.

A
x

4
x
.
B
2@3

(42)

In this way, the coefficients w
n,n`1

required for an
application of Equation 1 are determined. However, in
Equation 41 the activities uJ

i
"u

i
(cJ

i
) occur which have

to be replaced later by the known average activities
u
i
(c

i
) of the matrix. This replacement will lead to some

further revision of the expression for w
n,n`1

.
Moreover, as is evident from Equation 37, the effec-

tive diffusion coefficient, D*, is a function of the
concentration and depends, therefore, also on the in-
teractions between the solute components. Therefore,
as a next step, these dependencies have to be specified
and expressed through the interaction parameters b

ik
.

5. The coefficient of mass transfer of
the ith component Di[(cj)]ci

Taking into account the interaction between the sol-
ute particles the partial diffusion coefficients, D

i
, de-

pend on the concentration of the different components
(c

j
). This dependence is weak for the pre-factor D

i0
in

Equation 43

D
i
"D

i0
expA!

Q
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k
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but may be of significant importance with respect to
the activation energy of the diffusion process, Q

i
.

This activation energy may be written as a sum of
two terms, the first accounting for the contribution
only due to solute—matrix interactions, Q

i
(0), while the

second one, *Q
i
[(c

j
)], reflects solute—solute inter-

actions, i.e.

Q
i
[(c

j
)]"Q

i
(0)#*Q

i
[(c

j
)] (44)

Note that the solute—solute interaction is of signifi-
cance only for distances not exceeding several times
the respective lattice constants. Moreover, it is evident
that the activation energy of the diffusion increases
(*Q

i
'0) if the solute particles attract each other and

decreases (*Q
i
(0) is the interaction leads effectively

to a repulsion of the dissolved components. If the
different solute particles have nearly the same size as
the matrix building units (for the cases where they are
occupying vacant lattice nodes) or if they are suffi-
ciently small (occupying interstitial positions) then
the solute interaction changes exclusively the potential
well for the positions where the solute particles are
bound to the lattice without changing the general

shape of the energy relief.
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The change of the activation energy is given for such
cases by the energy of interaction of the solute par-
ticles as

*Q
i
"!+

k

b
ik
c
k

(45)

resulting in
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The partial diffusion coefficient of the ith component
may be written then in the form
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For an application of the equations describing
nucleation and growth of a stoichiometric multi-
component phase and not the partial diffusion coeffi-
cients themselves, but the so-called coefficients of mass
transfer, D

i
c
i

have to be known (cf. Equation 37).
Denoting the partial diffusion coefficient in the ab-
sence of solute—solute interactions by D(0)
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we obtain

from Equation 47
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or (cf. Equation 11)
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This result allows Equation 37 to be rewritten as

1

D*
"+

i

m2
i

a
i
D(0)

i
u
i

. (50)

In this way, it turns out that the effective diffusion
coefficient is, again, determined by the values of the
chemical activities of the different components u

i
.

With Equation 49 the relation for the density of
fluxes of particles of the ith component

j
i
"!

D
i
c
i

k
B
¹

gradl
i

(51)

may be transformed easily into

j
i
"!D(0)

i
gradu

i
(52)

Thus the only modification which must be introduced
into the relations for the description of nucleation
and growth for perfect solutions, derived by Slezov
[8], consists in the replacement c

i
Pu

i
.

Taking into account that for the case of kinetic
limited growth, the concentrations (or activities) in the
immediate vicinity of the evolving cluster or equal to
the average concentrations c

i
(average activities u

i
) in

the matrix, from Equations 37, 39 and 49 we have, for
kinetic limited growth

w
n,n`1

"

3D*n2@3

a2
.

A
x

4
x
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B
2@3

(53a)

1 m2
D*
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i
a
i
D(0)

i
u

i

(53b)
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By the method outlined elsewhere [7], we obtain for
the general case

w
n,n`1
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x
.
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D*D**

[D*#D**(a
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(54a)
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D (0)
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(54b)
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i

uJ
i

(54c)

In this general case, the chemical activities at the
boundary of the aggregate uJ

i
have to be expressed

through the average (u
i
) and equilibrium (for a cluster

of size n, (u
ni
) chemical via Equations 21, 33 and 52

resulting in [8]

u8
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i
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.
/a

i
R)#u
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)NC1#A

a
.
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i
RBD (55)

For diffusion limited growth, prevailing for large
values of the cluster size R, Equation 54 is reduced to

w
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4pRD**
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x

4
x
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(56)

In all considered cases, the rate of deterministic
growth of a cluster of size n may be determined from
the expressions for w

n,n`1
via an equation of the form

of Equation 41, where, however, u
i
(cJ

i
)"uJ

i
has to be

replaced by u
i
(c

i
), i.e. by

dn

dt
"w

n,n`1
lnA

<
i
[u

i
(c

i
)]m

i

K
n

B (57)

In this way, the determination of the kinetic coeffi-
cients w

n,n`1
and the deterministic growth rates is

finally accomplished.

6. The boundary conditions for the
cluster size distribution function:
the steady-state nucleation rate

In order to solve the kinetic equation for the deter-
mination of the evolution of the cluster size distribu-
tion, the boundary conditions for nP0 and nPR

have to be specified. If we express f (n, t) in the form

f (n)"( (n) exp A!
*' (n)

k
B
¹ B (58)

the physically reasonable boundary condition for
large values of n is (compare [8])

lim
n?=

( (n)"0 (59)

while for nP0 and non-interacting solute particles

lim
n?0

( (n)"
N

z»
<
i

cm
i
i

(60)

was shown to hold. z is the number of lattice places
in the matrix occupied by the particles forming one
structural element, N and », as mentioned, are the

total number of lattice sites (N) in the volume ».



While the boundary condition, Equation 59, re-
mains unchanged, Equation 60 has to be modified
accounting for the change of the number of possible
configurations (the change of entropy) due to the
interactions between the solute components. Instead
of Equation 60 we then obtain

lim
n?0

((n)"
N

z»
<
i

cm
i
i

exp A
*S (*/5)

k
B
B (61)

The entropy difference *S (*/5) can be expressed
through the work (with a minus sign) required in a
reversible process to transfer the different particles
containing a structural element of the new phase into
the pre-transition state or, equivalently, through the
differences in the chemical potentials as

¹*S (*/5)"!+
i

m
i
[l(*/5%3 &!#%)

i
!l

i
] (62)

In Equation 62, l(*/5%3 &!#%)
i

denotes the values of the
chemical potentials of the different interacting solute
components in a group of molecules in the interfacial
region capable of being incorporated into the aggreg-
ate of the newly evolving phase, while l

i
, as intro-

duced with Equation 9, refers to the respective values
in the bulk of the matrix.

Denoting the energy of interactions of the group of
molecules in the pre-transition state by e, which dif-
fers, in general, from the value +

ik
m
i
b
ik
c
k
for a random

distribution of the same solute components in the
bulk, Equation 62 may be rewritten in the form

¹*S (*/5)"!Ae!+
ik

m
i
b
ik
c
kB (63)

A substitution of Equation 63 into Equation 61 yields
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and with Equations 7 and 9
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or (cf. Equation 11)
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is obtained.
Once the kinetic coefficients w

n,n`1
and the bound-

ary conditions are known the Fokker—Planck equa-
tion can be solved and the steady-state nucleation rate
I can be determined (for the details see [8]). Taking
into account the interactions of the solute compo-
nents, we obtain
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By a substitution of the respective values for the

kinetic coefficient w

n,n`1
for n"n

#
(denoted by
w
n,n`1

(n
#
)) and the expressions for the derivatives of

the thermodynamic potential with respect to n, we
obtain
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for kinetic limited growth
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for diffusion-limited growth. Taking into account
Equation 54 for nucleation processes in solid solu-
tions, usually Equation 68 should be applied.

The time required for the establishment of the
steady-state nucleation rate may be approximated,
again, by

*tK
(*n)2

w
n,n`1

(n
#
)

(70)

while the condition where a constant nucleation rate is
found may be written as

(*n)2

w
n,n`1

)

*n

nR
#

(71)

*n characterizes the region in the space of structural
elements near the critical cluster size n

#
where the

growth of the aggregates proceeds mainly by diffu-
sion-like processes. This interval is given by (cf. [8])

*n"G
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­n2 D
n/n#
H
~1@2
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#
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4
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¹
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(72)

*t in Equation 70 is at the same time equal to the
mean passage time of an aggregate from subcritical
(n"n

#
!*n) to supercritical (n"n

#
#*n) values of

the number of structural elements by diffusional
motion in cluster size space. Equation 71 implies that
during such a time interval, the change of the critical
cluster size is sufficiently small.

7. Determination of the interaction
parameters

The incorporation of solute—solute interactions into
the description of segregation processes allows, in
addition to the extension of the region of applicability
of the theory, also a determination of the interaction
parameters for a given solid solution by investigations
of the course of segregation processes in it. In the
simplest approach, the quantities b

ik
may be con-

sidered as parameters which have to be determined in
such a way as to allow the best fit of the experimental

results.
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It is possible, however, to obtain some additional
information by varying the concentrations, c

i
, of the

different components. Considering the process of seg-
regation, e.g. of only the ith component, one obtains
from Equation 9 for a weak solution and an equilib-
rium coexistence of the pure ith phase with the matrix

w
i
"l(4)

i
!k

B
¹ ln c(=)

i
(73)

allowing determination of w
i

and l(4)
i

from a set of
measurements by varying the temperature. Similarly,
additional parameters may also be determined by
varying the number of components and their concen-
tration in the system.

8. Influence of interaction of the
solute components on coarsening
processes

In the case where the opposite to Equation 71, in-
equality, holds, the segregation process goes over into
the late stages which have been studied extensively
(cf. [8, 9]). In the late stage of segregation, the activities
(or concentrations) of the different components in
the matrix remain nearly constant and, although the
parameters in the kinetic coefficients (the deter-
ministic growth equations) are complicated functions
of the composition, the kinetic equations governing
the evolution of the cluster size distribution function
are of the same form as for the case of a perfect
solution. Here the same situation is found as for the
case of segregation of only one component in the
matrix (see [9]).

Introducing the reduced variables

u"A
n

n
#
B (74a)

s"lnA
n
#

n
#0
B (74b)

and the cluster size distribution function /(u, s) in
reduced variables [9]

/ (u, s)"f (n, t)n
#

(75)

the Fokker—Planck equation may be written for kin-
etic limited growth, again in the form (for the details
see [9, 20])
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For the case here considered of kinetic limited growth,
the critical cluster radius behaves for large times as
R

#
Jt1@2. It turns out that in intermediate stages of

the process (in the initial stages of coarsening), diffu-
sion processes in cluster size space (stochastic effects,
thermal noise) are of significance for the kinetics of
coarsening, including the shape of the cluster size
distribution function (cf. also [15, 17]). With time such
effects become less important. However, processes of
touching and merging of aggregates gain importance
for sufficiently large volume fractions of the segregat-
ing phase in the transition from nucleation to coarse-
ning and may influence the shape of the cluster size
distribution function significantly (cf. also [16]).

For diffusion-limited growth, the collision integral
retains the same form as for kinetic limited growth.
The Fokker—Planck equation now reads,
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The conclusions remain qualitatively the same as for
kinetic limited growth.

9. Discussion
In the present work, the influence of interactions
between solute particles in multi-component solid
solutions on processes of formation and growth of
phases with a given stoichiometric composition was
investigated. The analysis was carried out based on
a newly developed general method of treating nuclea-
tion and a particular (but rather general) good enough
approximation for the description of the interactions
of the solute components.

It turns out that the basic kinetic equations remain
of the same form as for the case of weak (perfect)
solutions. However, the kinetic and thermodynamic
parameters are complicated functions of the composi-
tion of the system and the interaction parameters. In
this way, the outlined theory gives, for the first time,
the possibility of an adequate quantitative interpreta-
tion of experimental results on segregation processes
in concentrated multi-component solutions.

The outlined approach also allows a straight-
forward extension to cases when elastic effects, the

influence of radiation on phase formation or other



external factors, have to be taken into account. More-
over, it also provides the basis for a treatment of the
general problem of phase formation under the condi-
tion that the monomeric building units of the evolving
phase interact with each other in nucleation and
growth. Such possible generalizations will be dis-
cussed in a forthcoming paper.
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